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Abstract
A theory for the nonlinear energy response of a system subjected to a heat bath is developed
when the temperature of the heat bath is modulated sinusoidally. The theory is applied to a
model glass forming system, where the landscape is assumed to have 20 basins and transition
rates between basins obey a power law distribution. It is shown that the statistics of eigenvalues
of the transition rate matrix, the glass transition temperature Tg, the Vogel–Fulcher temperature
T0 and the crossover temperature Tx can be determined from the first- and second-order ac
specific heats, which are defined as coefficients of the first- and second-order energy responses.
The imaginary part of the first-order ac specific heat has a broad peak corresponding to the
distribution of the eigenvalues. When the temperature is decreased below Tg, the frequency of
the peak decreases and the width increases. Furthermore, the statistics of eigenvalues can be
obtained from the frequency dependence of the first-order ac specific heat. The second-order ac
specific heat shows extrema as a function of the frequency. The extrema diverge at the
Vogel–Fulcher temperature T0. The temperature dependence of the extrema changes
significantly near Tg and some extrema vanish near Tx .

1. Introduction

Since the anomaly of the specific heat at the glass transition
was discovered in 1923 [1], many studies have been conducted
to understand the behavior. Since the anomaly depends
on the measurement process, the transition is now believed
not to be understood in the framework of the standard
thermodynamics [2].

Recently the concept of the landscape has been paid
much attention because of the possibility to explain the
transition in non-equilibrium systems [3, 4]. In particular,
the free energy landscape (FEL) picture proposed by Odagaki
et al [5, 6] is considered to provide the unified concept for
understanding thermodynamic and dynamic singularities of the
glass transition. In fact, the single-particle dynamics [7] and
the specific heat [8–14] were shown to be phenomenologically
well described by the framework based on the FEL. Namely,
the dynamical transition is understood as the Gaussian-to-non-
Gaussian transition [7], and the thermodynamic singularities
near Tg, including the cooling rate dependence of the specific
heat, are characterized as the quenched-to-annealed transition
in dynamics on the FEL [8–11].

1 Present address: Seiko Co., Ltd, Fukuoka, Japan.

The specific heat of non-equilibrium systems such as glass
forming materials is defined by the response of the energy to a
unit rise of temperature [15]. Because of the slow relaxations,
the system cannot reach equilibrium during the measurement
and the energy response shows a time delay. Therefore one can
expect that the ac specific heat [16, 17] will contain information
on the slow dynamics. The ac specific heat C̃1(iω) is defined
as the Laplace–Fourier transform of the energy or enthalpy
correlation function φ(t) [14, 18].

C̃1(iω) =
∫ ∞

0
dtφ(t)e−iωt . (1)

The ac specific heat is often fitted by the Laplace–
Fourier transform of the stretched exponential φ(t) =
exp(−(t/τ)β), since the correlation function is believed to
be the superposition of the Debye relaxation function with
different relaxation times. However, the origin of the
distribution of the relaxation times has not clearly been
understood.

So far, studies of the energy response of glass forming
systems have been limited within the linear response region,
and the nonlinear energy response has not been studied yet.
In a previous paper [14], we proposed the description of the

0953-8984/08/035105+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/03/035105
mailto:F_tagawa@si-seiko.com
http://stacks.iop.org/JPhysCM/20/035105


J. Phys.: Condens. Matter 20 (2008) 035105 F Tagawa and T Odagaki

first- and second-order energy response with the free energy
landscape picture and applied it to a two-level system with
a diverging barrier. It is shown that the second-order energy
response has a diverging term at the temperature where the
relaxation time diverges.

In this paper, we investigate the linear and nonlinear
energy responses of non-equilibrium systems described by
the FEL picture to an oscillating temperature and present the
characteristic behavior of the first- and second-order ac specific
heat. Using a model FEL which supports a glass transition,
we show that the Vogel–Fulcher temperature and the crossover
temperature as well as the glass transition temperature can be
determined from the characteristic behavior of the ac specific
heats. We also show that the statistics of the transition rate
matrix representing the stochastic dynamics among the basins
of the FEL can be obtained from the frequency dependence
of the first-order ac specific heat. In addition, the divergence
of the second-order ac specific heat is observed at the Vogel–
Fulcher temperature. This behavior is similar to the divergence
of the nonlinear susceptibility of the spin glass system and is
first measured in the glass forming model.

The organization of the paper is as follows. In section 2,
we explain the first- and second-order energy responses when
the temperature of the heat bath is oscillated sinusoidally.
The definition of the first- and second-order ac specific heat
is also given. In section 3, the stochastic dynamics on the
free energy landscape is explained. In section 4, we describe
the first- and second-order energy responses to the oscillating
temperature and the first- and second-order ac specific heats
when the system is described by the FEL picture. As an
example, a model system with FEL consisting of 20 basins is
analyzed. In section 5, where transition rates between basins
are assumed to obey a power law distribution, we present the
characteristics of the first- and second-order ac specific heats of
the glass former and show that the glass transition temperature,
the Vogel–Fulcher temperature and the crossover temperature
can be determined by the ac specific heats. In section 6, our
conclusion is given.

2. The first- and second-order specific heats

The specific heat at the constant volume CV is conventionally
defined by a derivative of the energy with respect to the
temperature,

CV (T ) =
(∂ Eeq

∂T

)
V
, (2)

where Eeq is the energy in the equilibrium state, T is the
temperature and V is the volume. In this discussion of the
specific heat, it is not considered how long the system takes
to equilibrate itself when the temperature is changed. When
the system contains degrees of freedom of slow dynamics, one
must consider the effect of the delay in response. We consider
the energy response of a system with slow relaxations which
is subjected to a heat bath whose temperature is oscillated as
T + �T (t), where T is the average temperature and �T (t) is
the oscillating part. We assume that the energy response �E(t)

can be expanded as follows:

�E(t) =
∫ t

−∞
dt1 C1(t − t1)�T (t1)

+
∫ t

−∞
dt1

∫ t

−∞
dt2 C2(t − t1, t − t2)

× �T (t1)�T (t2) + O(�T 3), (3)

where C1 and C2 represent the retardation effect of the system.
The Fourier transform �E(ω) of equation (3) is given by

�E(ω) = C̃1(iω)�T (ω) +
∫ ∞

−∞
dω1 C̃2(iω1, iω − iω1)

× �T (ω1)�T (ω − ω1) + O(�T 3) (4)

where the Laplace components C̃1(p) and C̃2(p1, p2) are
defined by

C̃1(p) =
∫ ∞

0
dt C1(t)e

−pt , (5)

C̃2(p1, p2) =
∫ ∞

0
dt1

∫ ∞

0
dt2 C2(t1, t2)e

−p1t1 e−p2t2 , (6)

and �T (ω) is the Fourier transform of �T (t).
We now discuss the energy response �E(t) when �T (t)

is a sinusoidal function �T (t) = Ta sin(ωt), where Ta is the
amplitude of the oscillating temperature. It is straightforward
to show that

�E(t) = Ta{C̃ ′
1(iω) sin(ωt) + C̃ ′′

1 (iω) cos(ωt)}
− T 2

a

2
{C̃ ′

2(iω, iω) cos(2ωt) − C̃ ′′
2 (iω, iω) sin(2ωt)

− C̃ ′
2(iω,−iω)} + O(T 3

a ). (7)

Here C1(t) and C2(t1, t2) are assumed to be real and the
notations ′ and ′′ represent the real and imaginary parts,
respectively. The coefficients of the first-order temperature
term, C̃ ′

1(iω) and C̃ ′′
1 (iω), are known as the real and imaginary

parts of the (first-order) ac specific heat, which was introduced
by Birge and Nagel [16] and by Christensen [17].

The second-order temperature term consists of the
oscillating and non-oscillating terms. We define the second-
order ac specific heat C̃ ′

2(iω, iω) and C̃ ′′
2 (iω, iω) by the

coefficients of the oscillating term.
The Laplace–Fourier transforms C̃1(p) and C̃2(p1, p2)

are related to the temperature derivative of the energy. When
the change of the temperature is slower than that of the
timescale of the retardation effects C1(t) and C2(t1, t2), it is
straightforward to obtain the following expressions:

lim
p→0

C̃1(p) =
∫ ∞

0
dt C1(t) = ∂ Eeq

∂T
(8)

lim
p1→0

lim
p2→0

C̃2(p1, p2)

=
∫ ∞

0
dt1

∫ ∞

0
dt2 C2(t1, t2) = 1

2

∂2 Eeq

∂T 2
. (9)

When the frequency is smaller than the inverse of the
structural relaxation time, the energy responses without delay
and �E(t) can be expressed as

�E(t) = ∂ Eeq

∂T
�T (t) + 1

2

∂2 Eeq

∂T 2
�T 2(t) + O(�T 3). (10)

2



J. Phys.: Condens. Matter 20 (2008) 035105 F Tagawa and T Odagaki

In this limit, C̃ ′
1(iω) becomes equal to the specific heat in

the equilibrium state, CV = ∂ Eeq/∂T and C̃ ′′
1 (iω) vanishes.

It can also be confirmed that in this limit C̃2(iω, iω) and
C̃2(iω,−iω) correspond to the temperature derivative of the
specific heat. These behaviors are consistent with equations (8)
and (9).

3. Dynamics on the free energy landscape

The free energy surface in the configurational space is defined
by the partial partition function, which is given by the partial
summation of the phase space spanned by the fast microscopic
motion [5, 6], and the slow dynamics is represented by
the stochastic motion on the free energy surface. Around
the glass transition point, the stochastic motions can be
classified into two types: the fluctuation in one basin due to
the structural fluctuation around a certain structure and the
transition between basins which corresponds to the structural
relaxation.

Here, we concentrate on the transition between basins and
ignore the fluctuation within a single basin. We denote the
probability that the system is in basin i at time t at temperature
T by Pi (T, t) and a physical quantity A of basin i by Ai(T ).
Then the physical quantity we measure at time t is defined as
an average over the basins,

A(T, t) =
∑

i

Ai(T )Pi(T, t) = �A(T ) · �P(T, t), (11)

where �A(T ) and �P(T, t) are the vectors consisting of
components Ai (T ) and Pi (T, t), respectively.

The probability vector �P(T, t) is assumed to obey the
master equation,

d

dt
�P(T, t) = W (T ) �P(T, t), (12)

where W (T ) is the transition rate matrix, i.e. Wi j is the
transition rate from basin j to i and Wii = − ∑

j �=i W ji is
the transition rate jumping out from basin i . The transition rate
is assumed to be related to the free energy barrier as follows:

Wi j = C exp[−β(FA(T ) − Fj (T ))], (13)

where C is the attempt frequency of the jump motion, β =
1/kBT is the inverse of the temperature T multiplied by the
Boltzmann constant kB, Fi (T ) is the free energy of basin i ,
FA(T ) = max{Fi (T ), Fj (T )} + �i, j (T ) and �i, j (T ) is the
energy barrier between basins i and j . In the high temperature
region, the transition rate is large and the system moves
among basins freely. On the other hand, the transition rate
becomes small and the structural transition is hindered at low
temperatures.

The transition rate matrix W in the master equation (12)
must satisfy the condition that the long time limit of Pi (T, t)
becomes the Boltzmann distribution

lim
t→∞ Pi (T, t) = Peq

i (T ) = exp[−β Fi(T )]∑
j exp[−β Fj(T )] . (14)

Therefore, the transition rate matrix W obeys the
following detailed balance:

W �Peq = 0. (15)

When the temperature T does not depend on time,
equation (12) can be readily solved,
�P(T, t) = exp[W (T )t] �P(T, t = 0)

= V

⎛
⎜⎜⎝

exp(λ1t)
. . .

exp(λN−1t)
exp(λN t)

⎞
⎟⎟⎠

× V −1 �P(T, t = 0), (16)

where N is the number of basins, λi is the i th eigenvalue of
W and V is a matrix whose columns are eigenvectors of W . It
is important to note that there is an eigenvalue λi = 0 which
corresponds to the detailed balance of equation (15).

4. The energy response to the oscillating temperature

4.1. The first- and second-order energy response

The time dependent temperature T̂ (t) is assumed to be T̂ (t) =
T + �T (t), where T is the average temperature and �T (t) is
the oscillating part of the temperature. The probability vector
�P(T, t) is expanded as

�P(T̂ (t), t) = �P0(t) + � �P1(t) + � �P2(t) + O(�T 3), (17)

where � �Pn is the term of order �T n . Note that the explicit
temperature dependence of the quantities on the right-hand side
of equation (17) is omitted. It is clear that �P0(t) = �Peq(T ).
Then the first- and second-order energy responses, �E1(t) and
�E2(t), at time t are represented as

�E1(t) = �E · � �P1(t) + ∂ �E
∂T

· �Peq(T )�T (t) (18)

�E2(t) = �E · � �P2(t) + ∂ �E
∂T

� �P1(t)�T (t)

+ 1

2

∂2 �E
∂T 2

�Peq(T )�T 2(t) (19)

where �E is the vector consisting of components Ei . The first-
and second-order probability responses, �P1(t) and �P2(t),
obey the following equations derived from equation (12):
d

dt
� �P1(t) = W (T )� �P1(t) + ∂W (T )

∂T
�Peq(T )�T (t) (20)

d

dt
� �P2(t) = W (T )� �P2(t) + ∂W (T )

∂T
� �P1(t)�T (t)

+ 1

2

∂2W (T )

∂T 2
�Peq(T )�T (t)2. (21)

It is straightforward to solve equations (20) and (21) as

� �P1(t) =
∫ t

−∞
ds eW (t−s) ∂W

∂T
�Peq(T )�T (s), (22)

� �P2(t) =
∫ t

−∞
ds1

∫ s1

−∞
ds2 eW (t−s1)

∂W

∂T
eW (s1−s2)

∂W

∂T
�Peq(T )

× �T (s1)�T (s2) + 1

2

∫ t

−∞
ds eW (t−s) ∂

2W

∂T 2
�T 2(s). (23)

3
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4.2. The first-order energy response and the ac specific heat

The (first-order) ac specific heat is defined as the linear
coefficient of the energy response to the temperature
change [12]. Comparing equations (3), (18) and (22), the
retardation effect of the first-order energy response C1(t) is
represented in the free energy landscape picture as follows:

C1(t) = 2C0(T )δ(t) + �E · exp(Wt)
∂W

∂T
�Peq, (24)

where C0(T ) = �Peq · ∂ �E/∂T is the quenched specific heat
contributed only from the fast degree of freedom at one
basin [8–11, 14]. The second term represents the response from
the transition between basins.

From equation (5), the first-order ac specific heat C̃1(iω)

is given by the Laplace–Fourier transform of C1(t).

C̃1(iω) = ∂ �E
∂T

· �Peq + iω �E · (iω − W )−1 ∂ �Peq

∂T
. (25)

The real part C̃ ′
1(iω) and the imaginary part C̃ ′′

1 (iω) are
written as

C̃ ′
1(iω) = C0(T ) + �E · V

×
⎛
⎝

λ2
1/(ω

2 + λ2
1)

. . .

λ2
N /(ω2 + λ2

N )

⎞
⎠

× V −1 ∂ �Peq

∂T
, (26)

C̃ ′′
1 (iω) = �E · V

×
⎛
⎝

λ1ω/(ω2 + λ2
1)

. . .

λN ω/(ω2 + λ2
N )

⎞
⎠

× V −1 ∂ �Peq

∂T
. (27)

The frequency dependence of the ac specific heat is
shown in figure 1 schematically. In the low frequency region,
C̃ ′

1(iω) approaches the specific heat in the equilibrium state
as Ceq(T ) = ∂ �E/∂T · �Peq + �E · ∂ �Peq/∂T and C̃ ′′

1 (iω)

vanishes. This indicates the fact that the energy responds
without time delay when the temperature is oscillated slowly.
Since the eigenvalue λi is distributed, C̃ ′′

1 (iω) has a broader
peak than that of the Debye relaxation type and C̃ ′

1(iω) is
represented as the sum of Lorentzian functions. This behavior
is consistent with the measurement of the ac specific heat in
glass forming materials [16]. In the high frequency region,
C̃ ′

1(iω) approaches C0(T ) and C̃ ′′
1 (iω) vanishes. This exhibits

that the energy response within the first-order temperature
perturbation is determined by the energy change in a basin
alone when the temperature fluctuates rapidly.

The first-order ac specific heat can be used as the method
to obtain the statistics of eigenvalues λi . From equations (26)
and (27), the scaled first-order ac specific heat is related to the
distribution of the eigenvalues λi of the transition rate matrix
as follows:

C̃ ′
1(iω) − C0

Ceq − C0
=

∑
i

gi
λ2

i

λ2
i + ω2

, (28)

Figure 1. The schematic picture of the (first-order) ac specific heat in
the free energy landscape picture.

C̃ ′′
1 (iω)

Ceq − C0
=

∑
i

gi
λiω

ω2 + λ2
i

. (29)

Here, gi is a factor related to the vectors �E , �Peq and V
given by

gi =
∑

j,k Ei V ji V
−1

ik
∂ Pk

eq

∂T

Ceq − C0
. (30)

In the small frequency region, the imaginary part behaves
as limω→0 C̃ ′′

1 (iω)/(Ceq − C0) = ∑
i giλ

−1
i ω. In the high

frequency region, the real part behaves as limω→∞(C̃ ′
1(iω) −

C0)/(Ceq −C0) = ∑
i giλ

2
i /ω

2 and the imaginary part behaves
as limω→∞ C̃ ′′

1 (iω)/(Ceq − C0) = ∑
i giλiω

−1. We can
estimate

∑
i giλi ,

∑
i giλ

2
i and

∑
i giλ

−1
i from the frequency

dependence of the scaled first-order ac specific heat. These
properties correspond to 〈λ〉, 〈λ2〉 and 〈λ−1〉 respectively, as
will be shown in section 5.

4.3. The second-order ac specific heat

The retardation effect of the second-order energy response
C2(t1, t2) is represented from equations (3), (19) and (23) as

C2(t1, t2) = 2
∂C0

∂T
δ(t1)δ(t2) + �E · exp(Wt1)

∂W

∂T
exp(Wt2)

× ∂W

∂T
�Peqθ(t2 − t1) + 1

2
�E · exp(Wt1)

∂2W

∂T 2
�Peqδ(t1 − t2)

+ 2
∂ �E
∂T

exp(Wt1)
∂W

∂T
�Peqδ(t2). (31)

The first term expresses the response due to the instant
change of the specific heat of each basin and the remaining
terms correspond to the effect of the transition motion between
basins. Here, δ(x) is the Dirac delta function and θ(x) is the
Heaviside step function.

From definition (6), the Laplace transform C̃2(p1, p2) is
represented as

C̃2(p1, p2) = 1

2

∂Ceq

∂T
− p2 �E · ((p1 + p2)1̂ − W )−1

× ∂W

∂T
(p21̂ − W )−1 ∂ �Peq

∂T
− p1 + p2

2

4
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× �E · ((p1 + p2)1̂ − W )−1 ∂2 �Peq

∂T 2

− p1
∂ �E
∂T

(p11̂ − W )−1 ∂ �Peq

∂T
. (32)

The second-order ac specific heats, which are introduced
in equation (3) by the coefficients of the oscillating term in
the second-order energy response, C̃2(iω, iω) = C̃ ′

2(iω, iω) +
iC̃ ′′

2 (iω, iω), are expressed as

C̃ ′
2(iω, iω) = 1

2

∂Ceq

∂T
− 2ω2 �E · (W 2 + 4ω2)−1 ∂2 �Peq

∂T 2

+ ω2 �E · (W 2 + 4ω2)−1

{
2
∂W

∂T
W + W

∂W

∂T

}

× (W 2 + ω2)−1 ∂ �Peq

∂T
− ω2 ∂ �E

∂T
(W 2 + ω2)−1 ∂ �Peq

∂T
, (33)

C̃ ′′
2 (iω, iω) = ω �E · W (W 2 + 4ω2)−1 ∂2 �Peq

∂T 2

+ ω �E · (W 2 + 4ω2)−1

{
2ω2 ∂W

∂T
− W

∂W

∂T
W

}

× (W 2 + ω2)−1 ∂ �Peq

∂T
+ ω

∂ �E
∂T

(W 2 + ω2)−1 ∂ �Peq

∂T
. (34)

In the low frequency limit, C̃ ′
2(iω, iω) becomes

(∂Ceq/∂T )/2 and C̃ ′′
2 (iω, iω) vanishes. In the high frequency

limit, C̃ ′
2(iω, iω) is equal to (∂C0/∂T )/2 and C̃ ′′

2 (iω, iω) van-
ishes. These behaviors are qualitatively similar to those of
the first-order ac specific heat. It indicates that the structural
change of the system can catch up with the temperature change
in the small frequency region and cannot in the high frequency
region.

Terms including the differential of the transition rate with
respect to the temperature, ∂W/∂T , are expected to show the
characteristic behavior in the low temperature region, where
the transition matrix W depends strongly on the temperature
change. This characteristic does not appear in the first-order ac
specific heat. In the high temperature region, the temperature
dependence of the transition rate matrix W is weak. Therefore,
the terms including ∂W/∂T are negligible, and the second-
order ac specific heat becomes the superposition of the
susceptibility of the Debye relaxation. We explain this
behavior for a trap model in the next section.

The second-order energy response can be measured in
the materials where the derivatives of the quenched and
equilibrium specific heats are very different, since the order
of the second-order energy response is the difference between
derivatives of these specific heats, ∂(Ceq − C0)/∂T .

The ac specific heat is often estimated from the
measurement of the temperature response to the oscillating
heat flow. The second-order ac specific heat can be also
measured from the temperature response. We explain the
relation in the appendix.

5. Application to a model free energy landscape of
glass forming systems

5.1. Model

To clarify the characteristics of the first- and second-order
ac specific heat of glass forming materials, we apply the
present analysis of the ac specific heat to a model landscape
incorporated with the distribution of the transition rate
exploited in the trapping diffusion model [7, 19].

We prepare a landscape consisting of 20 basins which are
mutually connected. The microscopic dynamics of the system
in each basin is assumed to be the Debye oscillator. The free
energy, Fi , of basin i is given by

Fi = εi + exp

{
9

(
T

�D

)3 ∫ �D/T

0
ln

(
1

2
sin−1 x

2

)
x2 dx

}
,

(35)
where the energy εi of the bottom of basin i is uniformly
distributed with the variance ε and �D is the Debye
temperature. Note that the form of the distribution does not
play any important role in the following discussion.

The energy, Ei , of basin i is calculated from the
temperature derivative of the free energy Fi . The transition
rate w is assumed to obey the power law distribution P(w) as
in the trapping diffusion model [7, 19],

P(w) =
⎧⎨
⎩

ρ + 1

w0

( w

w0

)ρ

(0 � w � w0)

0 otherwise,
(36)

where ρ is related to the configurational entropy Sc(T ) as

ρ = T Sc(T ) − TgSc(Tg)

TgSc(Tg)
. (37)

The transition rate from basin j to i , Wi j , is now a random
variable given by

Wi j = w0x
1

ρ+1 exp[−β(FA(T ) − Fj (T ))]
= w0x

Tg Sc(Tg)

T Sc(T ) exp[−β(FA(T ) − Fj (T ))]. (38)

Here, x is the uniform random number in [0, 1].
When the temperature is decreased towards T0 and Sc(T )

vanishes, two important aspects are pointed out from the
temperature dependence of Wi j : (1) Wi j approaches zero
and (2) the derivative of Wi j with respect to the temperature
∂Wi j/∂T has a diverging term,

− log xTgSc(Tg)

(T Sc(T ))2

∂(T Sc(T ))

∂T
Wi j . (39)

The characteristic behaviors of the ac specific heats are
related to these aspects. (1) The first-order ac specific heat has
a peak which shifts to the low frequency region and (2) the
second-order ac specific heat has a diverging peak related to
the diverging term of the temperature derivative of Wi j . (See
equations (33) and (34).)

For numerical calculations in this study, the exponent ρ of
the jump rate distribution is simplified as

ρ = T − Tg

Tg − T0
, (40)

5
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Figure 2. The scaled ac specific heat in the trap model at the
temperature T/Tg = 0.85 (solid line), 1.0 (dotted line), 1.25 (dashed
line).

i.e. the configurational entropy Sc(T ) is assumed as T Sc(T ) ∝
T − T0 with the Vogel–Fulcher temperature T0 ∼ Tk and the
parameters are chosen as T0/Tg = 0.75 and �D/Tg = 12.5,
respectively. In addition, the crossover temperature Tx is
Tx/Tg = 1.25, since the crossover temperature is identified
with the exponent ρ = 1.0 [19].

5.2. The first-order ac specific heat

The real and imaginary parts of the scaled first-order ac specific
heat (C̃1(iω) − C0)/(Ceq − C0) are shown in figure 2. As the
temperature is reduced, a peak of the imaginary part shifts to
the low frequency region and the width of the peak increases.

Figure 3 shows the temperature dependence of the
frequency ωpeak at the peak of the imaginary part. In the
low temperature region below Tg, ωpeak obeys the power law
function as ωpeak ∼ (T − T0)

0.914. In the high temperature
region above Tg, the temperature dependence changes and
ωpeak approaches towards 20w0. It is straightforward to
show that, when N basins are mutually connected, the ωpeak

becomes Nw0 in the high temperature region. In fact from
equation (38), all transition rates are w0 when the temperature
is much higher than the glass transition temperature Tg. The
relaxation time due to eigenvalues of the transition matrix W is
not distributed and the first-order ac specific heat becomes the
same as the susceptibility of the Debye relaxation. The master
equation (12) can be solved without difficulties in this limit as
Pi (T, t) = e−Nw0t (Pi (t = 0) − 1/N) + 1/N . Thus the peak
frequency ωpeak becomes Nw0 in the high temperature region.

We define the stretching factor σ by the ratio σ ≡
ω+/ω−(ω+ > ω−). Here, ω± is the frequency satisfying
the relation C̃ ′′

1 (iω±) = C̃ ′′
1 (iωpeak)/2. Figure 4 shows the

stretching factor σ as a function of temperature. In the high
temperature region above Tg, σ is the same as that of the Debye
susceptibility. As the temperature is reduced towards T0, σ of
the peak increases and diverges at T0. This means that the
relaxation time is distributed and the broad peak appears in

Figure 3. The temperature dependence of the frequency at the peak
of the imaginary part of the first-order ac specific heat: the peak
frequency (black circle) becomes small as the temperature reduces
towards the Vogel–Fulcher temperature T0. The line is fitted with the
data in the low temperature region.

Figure 4. The temperature dependence of the stretching factor σ of
the imaginary part. The line represents the fitted line by the
Vogel–Fulcher law. Here, σDebye = (2 + √

3)/(2 − √
3) is the

stretching factor for the Debye relaxation type. As the temperature is
reduced towards the Vogel–Fulcher temperature T0, σ increases.

C̃ ′′
1 (iω) below Tg. It is interesting to note that σ can be fitted

well by the Vogel–Fulcher law as σ ∼ exp(A/(T −T0)) shown
in figure 4.

The statistics of eigenvalues of the transition rate matrix
W can be obtained from the frequency dependence of
C̃1(iω) (see section 4.2). We show a result of comparison
of limω→∞ ωC̃ ′′

1 (iω)/(Ceq − C0), limω→∞ ω2(C̃ ′
1(iω) −

C0)/(Ceq − C0), and limω→0 ω−1C̃ ′′
1 (iω)/(Ceq − C0) with

statistics of eigenvalues 〈λ〉, 〈λ2〉 and 〈λ−1〉 in figure 5. Here,
〈 f (λ)〉 represents the statistics of eigenvalues as 〈 f (λ)〉 =∑20

i=1,λi �=0 f (λi )/20, which is calculated numerically from the
transition matrix W . The result indicates that the contribution

6
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(a) (b) (c)

Figure 5. The temperature dependence of (a) − limω→∞ ωC̃ ′′
1 (iω)/(Ceq − C0)/W0, (b) limω→∞ ω2(C̃ ′

1(iω) − C0)/(Ceq − C0)/W 2
0 and

(c) −W0 limω→0 ω−1(C̃ ′′
1 (iω) − C0)/(Ceq − C0) determined from the frequency dependence of the first-order ac specific heat. The solid lines

represent (a) −〈λ〉/W0, (b) 〈λ2〉/W 2
0 and (c) −W0〈λ−1〉, which are calculated numerically from eigenvalues of the transition matrix W ,

respectively.

of gi is negligible and the coefficients obtained from the
frequency dependence of the first-order ac specific heat can be
used to estimate the statistics of eigenvalues of the transition
rate matrix.

Figure 6 shows the temperature dependence of
limω→∞ ωC̃ ′′

1 (iω)/(Ceq − C0)/W0, limω→∞{ω2(C̃ ′
1(iω) −

C0)/(Ceq − C0)/W 2
0 }1/2 and limω→0 ω(Ceq − C0)/(C̃ ′

1(iω) −
C0)/W0; the deviation between these statistics becomes signif-
icant below Tg. This reflects that the distribution of the eigen-
values becomes broader below Tg.

5.3. The second-order ac specific heat

The real and imaginary parts of the scaled second-order
ac specific heat (C̃2(iω, iω) − C̃2(i∞, i∞))/(C̃2(0, 0) −
C̃2(i∞, i∞)) are shown in figures 7 and 8, respectively.
The real part shows a decreasing local minimum when
the temperature is reduced below the crossover temperature
Tx/Tg = 1.25. It is important to note that similar behavior is
shown for the imaginary part in figure 8, where the imaginary
part has a decreasing minimum and an increasing maximum
below the crossover temperature.

The deviation from the Debye relaxation appears clearly in
the Cole–Cole plot of the second-order ac specific heat shown
in figure 9. In the high temperature region, the plots show a
semicircle, since the second-order ac specific heat is equal to
the susceptibility of the Debye relaxation. As the temperature
is reduced, the plots deviate from a semicircle, that shows that
the terms including ∂W/∂T in equations (33) and (34) give
significant contributions.

The temperature dependence of the extrema of the second-
order ac specific heat is shown in figure 10. Below Tg, the
extrema obey the power law as (T − T0)

−ν as the temperature
is decreased towards T0, at which the configurational entropy
vanishes. The exponents ν are ν = 0.97, 1.05, 1.01 for the
local maximum of the real part, the local minimum and the
local maximum of the imaginary part, respectively. Above Tg,
the temperature dependence of the minimum of the imaginary
part deviates from the power law and approaches a constant
value.

Figure 6. The temperature dependence of − limω→∞ ωC̃ ′′
1 (iω)/

(Ceq − C0)/W0, limω→∞{ω2(C̃ ′
1(iω) − C0)/(Ceq − C0)/W 2

0 }1/2 and
− limω→0 ω(Ceq − C0)/(C̃ ′

1(iω) − C0)/W0. The deviation of these
properties becomes significant below Tg.

6. Conclusion

We have presented the theoretical formalism of calculating
the energy response to the oscillating temperature in the free
energy landscape picture. The characteristic behaviors of the
energy responses are summarized as follows.

The large and small frequency limits of the first-order ac
specific heat are identical to the equilibrium and quenched
specific heat in the free energy landscape picture, respectively.
Similar behavior appears in the second-order ac specific heat.
The large and small frequency limits of the second-order ac
specific heat are identical to the temperature derivative of
the annealed and quenched specific heat, respectively. The
distribution of the eigenvalues of the transition rate matrix
among basins is shown to give rise to a broad peak of the
imaginary part of the first-order ac specific heat. This is
consistent with the experiment for the glass forming materials.

7
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Figure 7. The real part of the scaled second-order ac specific heat at
temperatures T/Tg = 0.825, 0.875, 1.0, 1.25 and 2.5: As the
temperature is decreased below the temperature Tx /Tg = 1.25, a
local minimum decreases.

Figure 8. The imaginary part of the scaled second-order ac specific
heat at temperatures T/Tg = 0.825, 0.875, 1.0, 1.25 and 2.5: as the
temperature is decreased below the temperature Tx /Tg = 1.25, a
local minimum decreases and a local maximum increases.

We analyzed the first- and second-order ac specific heats
for a model glass former on the basis of the free energy
landscape picture and showed characteristics of the ac specific
heats.

A frequency ωpeak at a peak of the imaginary part of the
first-order ac specific heat shifts to the low frequency region
as the temperature is decreased below the glass temperature Tg

and approaches zero at the Vogel–Fulcher temperature T0. In
the high temperature region above Tg, ωpeak becomes virtually
independent of the temperature and approaches a constant
value. The width of the peak becomes larger than that of the
Debye relaxation type below Tg due to the distribution of the
eigenvalue of the transition rate matrix λ and diverges at T0.

Figure 9. The Cole–Cole plot of the scaled second-order ac specific
heat at temperatures T/Tg = 0.875, 1.0, 1.25 and 2.5: at a high
temperature, the plots are semicircles. As the temperature is
decreased, the plots deviate from semicircles.

Figure 10. The temperature dependence of the extrema of the scaled
second-order ac specific heat. The lines are fitted by power law
functions in the low temperature region. Below Tg, the extrema obey
the power law as (T − T0)

−ν . Above Tg, the temperature dependence
of the extrema shows significant changes.

The statistics of λ such as 〈λ〉, 〈λ2〉, and 〈λ−1〉 can be obtained
from the frequency dependence of the first-order ac specific
heat, and these quantities show deviation from the Debye-type
relaxation below Tg.

The scaled second-order ac specific heats have extrema,
which obey the power law as (T − T0)

ν below Tg. Above
Tg, the temperature dependence of the extrema changes. The
local minimum of the real part and the local maximum of
the imaginary part vanish and the local minimum of the
imaginary part approaches a constant value near the crossover
temperature Tx .

The characteristics of the transition rate among basins
reflect the frequency dependence of the first- and second-
order ac specific heats. This means that the glass transition

8
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point Tg, the Vogel–Fulcher temperature T0 and the crossover
temperature Tx can be determined from the first- and second-
order ac specific heats. It is interesting to note that we can
determine T0, which is measured by the mechanical properties
such as shear viscosity and diffusion coefficient, from the
thermodynamic properties as the first- and second-order energy
responses. We hope that the second-order ac specific heat will
be measured for glass forming materials in experiment.

The framework of calculating the response to the external
field with the free energy landscape picture is not limited in
the energy response and can be also applied to other physical
responses. For example, we can obtain the polarization
response to the magnetic field when the distribution of the
dipole moments at the basin is defined.

The main issue in calculating the physical response in the
real system is how the basin is defined with the microscopic
theories. We have considered that the free energy landscape
obtained by the density functional theory can be used to define
the basin [5] since the basin is defined as the local valley of the
density functional. We expect that the free energy landscape
picture will be evolved into microscopic theories in the future.
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Appendix

The ac specific heat can be measured from the temperature
fluctuation when the energy is oscillated as heat flow. The ac
specific heat is equal to the inverse of the coefficient of the
temperature fluctuation with respect to the energy oscillation.
Similar behavior is obtained in the second-order ac specific
heat.

The temperature fluctuation �T (t) is assumed to follow
the following equation:

�T (t) =
∫ t

0
dt1 D1(t − t1)�E(t1)

+
∫ t

0
dt1

∫ t

0
dt2 D2(t − t1, t − t2)

× �E(t1)�E(t2) + O(�E3). (41)

Here D1 and D2 are the retardation effects of first-
and second-order energy perturbation �E(t), respectively.

The Fourier transform of �T (t), �T (ω), is expressed as
follows.

�T (ω) = D̃1(iω)�E(ω) +
∫

dω1 D̃2(iω1, iω − iω1)

× �E(ω1)�E(ω − ω1) (42)

where

D̃1(p) =
∫ ∞

0
dt e−pt D1(t) (43)

D̃2(p1, p2) =
∫ ∞

0
dt1

∫ ∞

0
dt2 e−p1t1 e−p2t2 D2(t1, t2). (44)

A similar expression of the expansion �E(ω) with respect
to �T (ω) is shown in equation (4). The next relations are
obtained with substituting equation (4) to (42).

C̃1(iω) = 1

D̃1(iω)
(45)

C̃2(iω1, iω2) = − D̃2(iω1, iω2)

D̃1(iω1)D̃1(iω2)D̃1(iω1 + iω2)
. (46)

Thus the second-order ac specific heat can be measured
from the observation of the temperature fluctuation with
respect to the energy oscillation.
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